SPINITRON

AUTOMATION INTEGRATION

Document version: 2010-10-08
© Spinitron 2010
www.spinitron.com

617 233 3115

Contact: eva@spinitron.com

1 Introduction

2 Supported automation systems

2.1
2.2
2.3
2.4
2.5

SAM Broadcaster (Spacial Audio Solutions, LLC)
Simian (Broadcast Software International)

DAD (ENCO Systems, Inc.)

Megaseg (Fidelity Media, Inc.)

Rivendell Open Source Radio Automation

3 Topics common to all automation systems

3.1
3.2
33
3.4

Logging label name (aka publisher)

Full automation or live assist?

Protocols between automation systems and Spinitron
Security

4 Appendices

4.1
4.2
4.3
4.4
4.5
4.6
4.7

SAM logger PAL script

Megaseg Now Playing template file

Simian HTTP Stream Encoding Metadata URL template
Simian PAD template file

Spinitron generic remote logging APl parameters
Character encoding

Playlst mode parameter formal specification

NN DWW

10

12
12
15
16
20

22
22
23
23
23
24
25
25

1 Introduction

This document describes integration of Spinitron with supported automation
systems. Section 2 has a subsection for each system describing technical
implementation, possible difficulties and implications that station management
should consider. Section 3 discusses matters common across the systems. Section 4
is reference material.

FAIR WARNING: Remote logging from an automation system to Spinitron is a messy
business. That’s why this document is long—we describe all aspects of the mess that
we are aware of and consider relevant so you can make informed decisions. A
fraction of the material would suffice merely to configure an automation system so
that remote logging “works” but proper disclosure requires much more.

With the instructions below, you can make your automation system send log
messages to Spinitron. But Spinitron ignores them unless we configure it to accept
them from your station. So contact technical support to get automation logging
turned on. Moreover, we would prefer to review and test your configuration
together with you before you use it routinely.

We wrote the text for a reader who has experience administering the automation
system in question and has good general computer competence. There may be
unfamiliar concepts here but we use only industry-standard jargon so you should
have little trouble finding definitions and explanations online (Wikipedia is good on
computer topics).

Computer strings and code are in this monospace font with dotted border and in
which the space character is represented by a descending open box.

“We” refers to Spinitron the company/people while “Spinitron” refers to the
Spinitron servers/software/system. “You” means you the reader or your station or
someone at your station following the instructions.

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

2 Supported automation systems

We describe, in this section, how to set up remote logging to Spinitron on each of the
supported automation systems. (For some of them there’s more than one way to do
it and each is described.) This will get you going quickly and shouldn’t require much
thought or background knowledge.

But following the “how-to” part in each section we have:
* Detailed discussion of problems with the system/method, if any
* Description of controlling Spinitron’s playlist handling mode

* A summary of the automation system (and logging method) with respect to
the general problems of remote automation logging

And you may need to read (parts of) the deeper discursive material in Section 3 to
make sense of this stuff. This structure results form our decision to put the “how-to”
for each system up front.

2.1 SAM Broadcaster (Spacial Audio Solutions, LLC)

SAM Broadcaster doesn’t have any built in features specifically for sending song
metadata to remote machines (unlike several other automation systems) but it does
have PAL, a powerful built-in programming language with which we can implement
what we need.

We wrote a basic PAL script that logs songs to Spinitron over HTTP (see Section 4.1).
Feel free to adapt this to your situation and needs but, to maintain compatibility with
Spinitron, please observe the comments indicating what not to modify.

Configure the script for your needs (by |RRSEEES
changing the constant values at the top) + — & »

and save the file somewhere on the SAM || Auo] Sciptfie | Status
. . ..) 1 No SimpleClock\Wheel pal Stopped
computer with an obvious descriptive file |2 Mo Steamadspal Stopped
. . 3 No Example.PAL Stopped
name (because the file name is used as |m it ionLogging.p
script name in the PAL Scripts window) and

.pal extension, e.g.:
SpitrionAutomationLogging.pal.

Then, in SAM, locate the PAL Scripts window (Desktop B in the default configuration
of desktops) and click the + button in its toolbar. SAM asks you to locate the script
file—do that and press OK.

To start/stop the script: click to select it and use the triangle/square buttons in the
toolbar. The fourth icon from the left in the toolbar opens the built-in script editor
and debugger.

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

You can configure the script to work in either full automation or live assist mode (see
Section 3.2) with the pm constant. If you need to switch between modes on one
computer you can, at the very least, have two PAL scripts, one that logs songs with
pm=0 and the other with pm=2. Be careful to only run one at a time. But, with more
sophisticated PAL programming, you may be able to find a much nicer solution.

Table 1. SAM Broadcaster summary—see Section 3 for exposition

Label Yes Label names in the SAM library are logged to Spinitron

Playlist mode switch OK Switch between two scripts in the PAL Scripts window.
Better methods possible with better PAL scripts

Protocol HTTP HTTP is our preferred protocol

Framing/delineation Reliable Nothing to worry about

Security None User/pass in plaintext in HTTP requests

Viability Good Solution is viable if station accepts security risks

2.2 Simian 2.0.7 (Broadcast Software International)

There are two ways to integrate Spinitron with Simian:

* HTTP method: use Simian’s Stream Encoding Metadata feature to send song
metadata to Spinitron in HTTP requests

* PAD over TCP/UDP method: configure it to send PAD Metadata messages to
Spinitron over TCP or UDP

You configure these features in Program Options on the Streaming and Metadata
tabs respectively.

2.2.1 HTTP method

The Stream Encoding Metadata feature is documented fairly well in the Simian
manual. You configure it in two steps:

First, configure one of the three Custom services in the file
C:\BSI32\EncoderData.ini. The configuration is a URL template string in which
special tags such as %ARTIST% and %TITLE% are placeholders for song metadata. Every
time a new song starts playing, Simian replaces the tags in the URL template with the
corresponding song metadata and then sends an HTTP request for that URL to the
server. There is a template for Spinitron logging in Appendix Section 4.3 in which you
need to change the st parameter to your station ID.

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

Next, under Stream Encoding I Geredl | Eves | Pans Loglmport |

Categories

. . . FlexTime | Remote | HTML Streaming! Metadata
Metadata in the Streamlng tab in Windows Media Encoder Services
Preferences, enable and configure [Enable WMES functionaity I Default Text Script Command:
. . I Initislize WMES Encoder on startup |
the corresponding Custom service: WME Fio Nams -
ether 1, 2 or 3, depending what you
did in EncoderData.ini. Stream Encoding Metadata
URL / Port Use Exclude Categories Usemame Password
.. , [~ ShoutCAST | | I
In URL/Port, enter Spll.‘lli.iron S server aerer | o l
IP address (resolve spinitron.com to SimpleCAST | ol |
find out, or ask our customer I Live3ss | ol [
SerVice) and port number 80 USing v Custom 1 Ihtlp:/f85.38.221.80:80 [Iuser@maildom |password
I Custom2 ~
the http URL scheme, e.g. won2 | | |
I~ Custom 3 | r I |
http://65.39.221.80:80.
Default Artist / Advertiser Default Title / Description Default URL
Enter the username and password |
of the Spinitron user account you

will be using for automation playlist logging. (Your station ID is also required for
authentication but it has to go in the URL template file).

We have not been able to see any effect from the Use Exclude Categories checkbox
(possibly a bug). According to the manual, you ought to be able to use this together
with Simian’s Categories configurations to prevent anything but music from being
sent to Spinitron. This would be a very good thing. If you figure it out, let us know.

You can operate in full automation mode with the URL template as given or append
&pm=2 for live assist mode (see Section 3.2). If you need to be able two switch
between the two modes, you can configure two custom Stream Encoding Metadata
services in EncoderData.ini, one with pm=e in the URL template and the other with
pm=2. Then identically configure the two corresponding custom services in Streaming
tab in Preferences. Enable one and disable the other with the checkboxes on the left
to switch modes (never enable both). Simian playback must be stopped to access
Preferences.

Problems in Simian 2.0.7

UPDATE—WE HAVE TESTED A BETA VERSION OF SIMIAN 2.1.0 THAT FIXES THE
FOLLOWING BUGS. ONCE IT IS RELEASED, HTTP WILL BE THE PREFERRED METHOD.

There is a bug in Simian: it does not URL-encode the album name when constructing
a URL with the %album% tag in the template. This is serious and we cannot use this
feature for automation logging until Simian fixes it.

The Simian manual doesn’t mention that you can use the %publisher% tag in the URL
template but it works, albeit suffering from the same bug as %album%—it is not URL-
encoded.

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

Another bug: if the HTTP server does not respond, Simian’s user interface hangs up.
Although the audio continues to play without interruption, it seems to the user as
though Simian has frozen. It’s hard to get out of this state without forcibly closing
Simian. This might not be a showstopper but it’s something you need to know.

So, as it stands, we can’t use the HTTP method. That’s unfortunate because it’s a
much better protocol (see Section 3.3) than PAD over either TCP or UDP.

Table 2. Simian 2.0.7 HTTP method summary—see Section 3 for exposition

Label Bugs Label names in Simian library are logged to Spinitron but with bugs

Playlist mode switch OK Switch between streaming metadata services in Preferences.
Better Ul with Macros and Custom Carts?

Protocol HTTP HTTP is our preferred protocol
Framing/delineation Bugs Album and label names not URL-encoded
Security None User/pass in plaintext in HTTP requests
Viability None Bugs prevent this method’s use

2.2.2 PAD over TCP/UDP method

PAD is short for Program Associated Data, broadcast industry jargon for just what we
need: metadata describing the program.

Simian’s PAD Metadata feature employs a user-defined template file. The template
file may contain arbitrary text and special tags that are placeholders for song
metadata such as %artist% and %title%. (The Simian manual describes the tags as
having the form <!--BSIARTIST-->, <!--BSITITLE--> etc. but these don’t work.) Every
time a new song starts playing, Simian reads the template file, replaces the tags with
the corresponding song metadata to create a PAD message, and then sends it to a
remote host over TCP or UDP.

Section 3.3 describes general problems with TCP or UDP transmission of PAD
messages over the Internet. But in addition to these, Simian’s current version
implements PAD over TCP so that it stops when the TCP connection gets into certain
(common enough) states.

So, with bugs preventing use of HTTP or PAD over TCP we are stuck with PAD over
UDP, which is intrinsically unreliable. If the packet loss rate between Simian and
Spinitron is low enough then it will work. But that’s a huge “if”” clause and we have
no way to predict how much of the time it will be true. For now, it’s all we’ve got.

To set up PAD over UDP, save the Spinitron PAD template file (Appendix Section 4.4
or get the latest from us) on the Simian computer, e.g. in C:\BSI\. Then configure the
PAD Metadata feature in he Metadata tab of Program Options as follows.

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

Enable either service 1 or 2 with the
checkbox. Click the ... button and
select the Spinitron PAD template file
you saved in the previous step. Enter
Spinitron’s server IP address (resolve
spinitron.com to find out, or ask our
customer service) and port number

55431. Select UDP with the radio
button.
The Use Exclude Categories

checkbox is as described for the
HTTP method above (i.e. baffling).

To use live assist mode (see Section
3.2) you need to add a line with ~pm=2

[General T Events T Paths Log Import T Categories
FlexTime I Remote I HTML I Streaming I iMetadata:
[v Metadata 1
Template File Name IP Address Port + UDP
|C:\BS132\spiritron_templ3.tat 55.39.221.80 [44322 TCP
™ Use Exclude Categories
[v Metadata 2
Template File Name IP Address Port " UDP

+ TCP
™ Use Exclude Categories
Default Artist / Advertiser Default Title / Description Default URL

to the template. To switch between full automation and live assist on one computer
you need to change the template file or switch between two template files. If both
Metadata 1 and 2 (in Program Options: Metadata tab) are available then you can
configure 1 with a template including pm=e and the 2 with pm=2. Enable Metadata 1 and
disable 2 (with the enable checkbox’s in Program Options: Metadata tab) for full
automation and visa versa for live assist (and never check both at once!). There may
be a way to use Simian’s macros to make the process easier for DJs.

Table 3. Simian 2.0.7 PAD over TCP/UDP method summary—see Section 3 for exposition

Label Yes

Playlist mode switch OK

Protocol
Framing/delineation Good
Security None

Viability Fair

station accepts security risks

2.3 DAD (ENCO Systems, Inc.)

2.4 Megaseg 5.1 (Fidelity Media, Inc.)

Not 100% reliable but probably good enough

User/pass in plaintext in PAD messages

Label names in the Simian library are logged to Spinitron

Switch between PAD metadata services in Preferences. Better
Ul with Macros and Custom Carts?

TCP/UDP TCP is unusable owing to session bugs. UDP is unreliable

Solution is viable if UDP message loss rate is low in practice and

UPDATE—MEGASEG 5.5 HAS GENERALIZED LOGGING OF NOW PLAYING METADATA
OVER HTTP. IT REPLACES THE SHOUTCAST METHOD AND IS SUITABLE FOR OUR

PURPOSE. THE TEXT BELOW NEEDS TO BE UPDATED ACCORDINGLY.

There are two ways to integrate Spinitron with Megaseg:

Automation integration v. 2010-10-08

© 2010 Spinitron. Do not copy or redistribute

* Shoutcast method: redirect Megaseg’s Shoutcast metadata update messages
to Spinitron

* Now Playing file method: Run a program that monitors Megaseg’s Now
Playing file and sends the song metadata it contains to Spinitron

(5] Preferences

Megaseg’s Shoutcast and Now Playing

file features are both configured in ("General | Views | Playback | In/Outputs | Events | Scheduler | Rules |nkogh)
the Log tab in Preferences. '
! Update Live365.com Track Info:

Nar tor

2.4.1 Shoutcast method ERE tom
Password: eeesssscse

You can type an arbitrary URL into the Update SHOUTcast Track Info:
ShOUtcaSt “Server IP/URL” fleld and Server IP/URL: | http://spinitron.com/member/megaseg.php
Megaseg will, every time a new song Name:
starts, request (with the HTTP GET Password: | essessssessaressacae
methOd) the URL from the server W|th Use Custom Template File for: Exclude Tracks in Categories:
metadata of the now-playing song in (] Now Playing file Videos -_
the GET query parameters. Assuming ERecentvilaveclie

the station isn’t already using this (] Coming Up file

Shoutcast feature, it can be used to
log songs to Spinitron.

The “Name” field is (as far as we can tell) ignored. The value in the “Password” field
is included in plaintext as one of the query parameters. A typical query part of the
request URL looks like this:

?mode=updinfo&pass=password&song=I%27m%20Insane%20-%20Sonic%20Youth%20-
%20Bad%20Moon%20Rising%20%281985%29

There are three GET parameters in the query: mode is a Shoutcast command and
irrelevant to our purpose, pass is obvious, and song contains all the (URL-encoded)
song metadata, which decoded is:

I'm,Insane,-,Sonic, Youth - Bad _Moon Rising, (1985)

Notice how Megaseg has strung Title, Artist and Album (from the Megaseg library)
together with two space-hyphen-space -, separator substrings.

This poses two problems. First, entirely absent is record label (or Publisher as it is
denoted the Megaseg library), which is relevant to SX reporting. It’s not necessarily a
killing point but stations that care about the label field should think carefully about
what happens when it is omitted from the automation log messages sent to
Spinitron. Section 3.1 deals with this matter.

Second, in typical music metadata, space-hyphen-space is a common enough
substring to cause trouble delineating the artist, song and disk fields in the song
parameter. We don’t know an algorithm that can reliably do this. Again, this might

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

not be a killing point but some stations will surely find it irksome or worse. To get a
measure of the problem, take a look at a large iTunes music library, type a hyphen
into the search field and scroll through looking for space-hyphen-space substrings.

Authentication: to log the song in a playlist, Spinitron needs to identify the station
that sent the log message and authenticate a Spinitron user account to own the
playlist. Type station, username and password all into Megaseg’s Shoutcast
Password field separated by the pipe symbol, e.g.

wxyz |user@maildomain.com|password

You might find it easier to compose this in another program and paste into Megaseg
because Megaseg obscures typing in the password field.

To control playlist handling mode on the server, i.e. full automation vs. live assist
modes (see Section 3.2), we can use configuration either of the Shoutcast “Server
IP/URL” field or of another parameter coded into the password field. These are the
only places available to put the information that allows the client to select the mode.
This might be acceptable for static configurations. But if one instance of Megaseg on
one computer at the station does double duty then switching between the modes
will likely be uncomfortable for DJs. Reconfiguring the hidden password is just not
realistic so we are stuck with reconfiguring the URL, e.g. switching between megaseg-
auto.php and megaseg-1live.php.

Table 4. Megaseg Shoutcast method summary—see Section 3 for exposition

Label No Label names in the Megaseg library are not logged to Spinitron

Playlist mode switch Poor Reconfigure Shoutcast Server IP/URL in Preferences

Protocol HTTP HTTP is our preferred protocol

Framing/delineation Poor Space-hyphen-space in artist or song name breaks delineation
Security None User/pass in plaintext in HTTP requests

Viability Maybe Solution is viable if (1) logging label name is not required, (2)

occasional artist/song/disk name delineation failures are
acceptable, and (2) station accepts security risks

2.4.2 Use the Now Playing file

If you click the checkbox for “Now Playing file” under “Use a custom template for:”
(in Megaseg’s log preferences), Megaseg prompts for a template file. The template
file may contain arbitrary text and special tags that are placeholders for song
metadata. The tags are special HTML comments such as <!--MegaSeg Artist--> or
<!--MegaSeg, Title-->. Every time a new song starts playing, Megaseg reads the
template file, replaces the tags with the corresponding song metadata and writes the
Now Playing file into the Megaseg Logs directory.

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

10

Spinitron wrote a script that runs in the background monitoring the Now Playing file.
Every time Megaseg changes the Now Playing file, the Script detects the update,
reads the file, extracts the song metadata and sends it to Spinitron in an HTTP or
HTTPS request.

This overcomes the two problems with the Shoutcast method (missing label and
poor field delineation). First, we have designed a Now Playing file template (see
Appendix section 4.2) that should provide satisfactory field delineation. Second,
thereis a <!--MegaSeg, ,Publisher--> tag for label name. (See also Section 3.1).

You need to modify the template file using your station ID and user/pass for your
automation logger user account.

A concern with our script is its lack (at present) of a conventional graphical user
interface: it runs on the Mac OS X command line (CLI), which may or may not be a
problem. If, on your station’s automation computer, you use Megaseg only in full
automation mode (see Section 3.2) then we can set up the script to run as a system
daemon running all the time and all songs played by Megaseg on that computer will
be logged on Spinitron in playlists belonging to the automation user account. But if
you need to switch between full automation and live assist modes on one computer
then we need to come up with some kind of user interface.

Table 5. Megaseg Now Playing file method summary—see Section 3 for exposition

Label Yes Label names in the Megaseg library are logged to Spinitron
Playlist mode switch Poor Requires use of CLI. GUI development a possibility?
Protocol HTTP(S) HTTP(S) is our preferred protocol

Framing/delineation Good Not 100% reliable but probably good enough

Security Good HTTPS can be used

Viability Depends Solution is viable if playlist mode switching is not required.

Otherwise viability may depend on software development

2.5 Rivendell Open Source Radio Automation

The fine folk at WMFO (Somerville, Mass.) wrote a loadable extension module for
Rivendell 1.5 called Spinitron Update. They released' it as open source under GNU GPL
2.0 so you are free to use it, modify it and contribute to its further open source
development. It has been in use for some time so we have confidence in its
robustness.

You need to edit the source code to enter your station ID and the user/pass of the
automation logger account and recompile the module. We have no experience with

! https://wiki.wmfo.org/Operations/Code/Rivendell - Spinitron_Update

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

1

the recompile part but, if you are successfully using Rivendell already, you probably
do.

The module supports both live assist and full automation modes of operation. If you
use the same computer for both of these roles at your station (as is the case at
WMFO) then you will need to train staff to switch modes as appropriate. WMFQ’s
wiki web page' says that they implemented the user interface in Rivendell using
macro carts.

If, on any given machine at your station, Rivendell runs exclusively in either live assist
or full automation mode then you have a couple of options. You can use the module
as is and set configure Rivendell into the mode you need or you can modify the
source and recompile the module hard coded into one mode or the other, loading
the appropriate module(s) in your instance(s) of Rivendell.

Table 6. Rivendell summary—see Section 3 for exposition

Label Yes Label names in the Rivendell library can be logged to Spinitron

Playlist mode switch Good Custom macro cart

Protocol HTTPS HTTP(S) is our preferred protocol
Framing/delineation Reliable Nothing to worry about

Security Good HTTPSis used

Viability Proven Field proven

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

12

3 Topics common to all automation systems

3.1 Logging label name (aka publisher)

If logging label name is important to you, perhaps because you want to use the
automation-logged playlists in SoundExchange reports, then two problems need to
be addressed:

* Does the automation system you use allow logging of label name?

* Do you have any (or enough) label names in your automation music database?

If the answer to either question is no then you will end up sending song log messages
to Spinitron without label name. We discussed the first question for each of the
automation systems (and transmission method) in turn in Section 2 but the technical
capacity to send label names is useless without label names in the automation music
database.

The situation raises more questions:
* Canyou get label names into your automation system’s library?
* What happens when you log to Spinitron without label name?

* (an Spinitron fill in the blank label names?

It appears DAD does not deal with label name or publisher but all the others (SAM,
Simian, Megaseg and Rivendell) support a suitable publisher/label field and have
ways to populate that field. So (DAD aside) the answer to the first question is, in
principle, yes.

How you would populate it is another matter. Entering it manually would be
relatively reliable and accurate but you may not have the resources. Gracenote CDDB
could accurately identify label name when it rips a CD but it usually does not because
it doesn’t have the data. That situation is compounded and made stable because
iTunes doesn’t have anywhere in its library to store label name.

Other commercial music metadata databases are available (e.g. Amazon) that include
label names. Could you refer to one of these to look up the label name? It’s possible
but the results would be badly inaccurate. First, there will be mismatches between
your automation library’s entries and corresponding ones in the database in which
you’re searching for label names. Second, many songs have been released several
times on different labels, often in different mixes and versions but with the same or
similar name. If the point of logging label name in Spinitron is SoundExchange
reports then accuracy is relevant because it affects who gets the royalties for use of
the sound recording.

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

13

Spinitron performs a lookup a bit like this in the manual playlist entry web form. The
autocomplete feature may fill in the label name form field if the user selects both
artist and disk name suggestions. But in this case, the human user is still responsible
for the data entered. If the suggested label name is wrong, it should not be used.

But if Spinitron were to implement something similar, to fill in absent label names in
automation log messages there would be no human oversight and any number of
errors could creep in. Such a feature is certainly possible but we would need to
extract disclaimers form clients who want to use it—Spinitron could take no
responsibility for the accuracy of the results.

3.1.1 Spinitron’s processing of a log messages without label name

Under very specific conditions, Spinitron will assign a label name to a song logged by
an automation system when there’s no label name in the message. We set out the
conditions in detail here and discuss how it might be useful.

Database structure

The database schema used by each Spinitron member station has (among others) the
following tables:

* Artists
* Disks

* Labels
* Songs

A system of references among the rows in these (and other) tables constructs the
playlists and other views of your data that you are familiar with as a Spinitron user.

Rows in Artists are joined to rows in Disks by a fifth table called Appearances. One
row in Appearances represents one dappearance of one artist on one disk. This
structure allows a many-to-many relationship between disks and artists: one artist
can appear on many disks and one disk can have appearances of many artists.

Each row in Songs references an appearance, which allows a many-to-one relation
between songs and the appearance of an artist on disk.

And finally, each row in the Disks table can reference a row in the Labels table
allowing a many-to-one relation between disks and a label.

Logging songs to the database

When an automation system logs a song to Spinitron, the message it sends includes
an artist name A, a disk name D, and a song name S. We are considering the case that
the message does not include a label name. Spinitron uses the same algorithm to add

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

14

the song to your database that it uses when a DJ enters a song manually by the
pressing Submit button in the playlist entry form.

What happens depends on whether or not there is a matching appearance of A on D
already in the station’s database. To be precise:

* If there already exists in the database an appearance of A on D then thereis a
matching appearance.

* If Aisn’t already in Artists then there is no matching appearance.
* If there are no rows in Disks matching D then there is no matching appearance.

* |If A exists in Artists and there’s one or more rows in Disks match D in Disks but
none of them already have an appearance of A then there is still no matching
appeadrance, except in a special case...

* ...if the log message indicates that D is a multi-artist compilation an
existing row in Disks matches D that is also a multi-artist compilation, then
Spinitron adds a matching appearance (of A on D) to the Appearances
table.

Those are the two ways to get a matching appearance. In the three other cases, a new
appeadrance is created. Finally S is entered into the Songs table and assigned to the
matching or new appearance. So the song S will appear in its playlist® with a label
name if S gets assigned to a matching appearance of an artist on a disk that’s already
assigned to a label.

Consequences

Stations that need label for compliance reasons might wonder if they can exploit the
behavior described above to fill in label if the automation system can’t send it or
doesn’t have it. It can be done but most likely only with special preparation.

Remember, to fill in the label:
* You need a matching appearance,
* already existing in your station’s database,
* in which the disk must already have a reference to a label.

* And the search for artist and disk names requires an exact match’

This is a lot different from autocomplete and web search. The only way we can
imagine to reliably get a good hit rate is to import your music library with label names

* And therefore also in SoundExchange and various other reports and views.

> We mean exact in the sense that no fuzzy matching is used, not to imply that strict string comparison
is. In fact some flexibility is involved: matching is case insensitive and it ignores diacriticals. See:
http://[www.collation-charts.org/mysql6o/mysql604.utf8 general ci.european.html

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

15

into Spinitron in advance and use the same music library as the basis for the
automation system.

That’s only going to be helpful under certain circumstances:

* Your music library is small enough that you can manually add label names to it
before importing to Spinitron

* You have alot of volunteers to share that work

* You're willing to constrain the automation system to play from the subset of
songs in the library with label names

* You use automated fuzzy matching against a commercial database to find
label names (mentioned in previous section) and accept the associated
inaccuracies

* You library has label names but your automation system won’t import them or
can’t log them to Spinitron

For example, to support SoundExchange quarterly reporting you might: 1. Use
volunteers to add label names to a starter set of disks in the existing library. 2. Keep
that project rolling over time. 3. Enforce a policy that new music added to the library
must have label name. 4. Configure the automation system to play only songs with
label during your SX reporting periods.

3.2 Playlist mode: full automation or live assist?

Automation systems can be used in these two modes:
* Full automation: playing the station’s program content with no DJ required, or

* Live assist: making it a manually operated media playback device that a DJ
uses while doing a radio program live on air.

Spinitron’s remote logging capability supports both of these by offering the
automation system control over how Spinitron selects (or creates) the playlist into
which any given song is logged.

You may have noticed that in Section 2, all methods of transmitting song metadata
to Spinitron involve organizing them into strings identified by codes, most of them
with two letters: st, sn, dn etc. These are then sent either as HTTP GET parameters, or
as form data in HTTP POST requests, or as labeled strings in a formatted text file.

An additional playlist handling mode parameter pm provides the required control over
Spinitron’s playlist selection. The three modes are, in simple terms:

pm Used for Playlist handling

0 Full automation Log the song to a suitable playlist belonging to
(this is the default if pm user identified in he message, creating a playlist

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

16

is omitted or invalid) if necessary

1 Full automation As pm=0 but also mark the playlist as the
“current playlist”

2 Live Assist Log the song to the “current playlist”

You can ignore mode 1. Since the first release of the remote logging API, Spinitron’s
use of the “current playlist” concept has diminished to near irrelevance. (If you care,
the change can be found in Appendix section 4.7.1.) You can also probably ignore the
formal specification of the effects of pm on server behavior in Appendix section 4.5.

If pm=6 then Spinitron logs the song into a playlist belonging to the automation logger
user account (i.e. the one specified together with the song metadata in each log
message your automation system sends to Spinitron).

If pm=2 then Spinitron inserts the song the “current playlist”. When a DJ opens a
playlist choosing “I am working on the playlist: live on-air” then this playlist becomes
the “current playlist”. In this way the DJ can live-log a show in Spinitron and save the
trouble of typing the song into Spinitron’s web form whenever he or she spins a tune
from the automation system in live assist mode. The user credentials un and pw are
still required in the automation log message to authenticate the sender of the
message even though the song is logged into a different user’s playlist.

If on a given computer, the automation system is used exclusively in full automation
mode then you can leave pm out of the configuration altogether. If the computer is
used exclusively in live assist mode then pm=2 can be hard coded into the URL or PAD
template or PAL script.

But if a given computer at your station does double duty, performing full automation
and live assist, and you want it to log songs to Spinitron in both modes then your
staff needs a way to switch pm between e and 2. And you really want to avoid using
the automation system if pm is set wrong. There are notes on controlling mode in
each subsection of Section 2.

3.3 Protocols between automation systems and Spinitron

There are at present four available protocols for the transmission of remote logging
messages from automation systems to Spinitron:

« HTTP

* HTTPS (i.e. HTTP over secure TLS/SSL transport)
* PAD over TCP

* PAD over UDP

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

17

Conveniently, HTTP and HTTPS are the same except for their use of security at the
transport layer. Here we treat them as equivalent—the differences are discussed in
Section 3.4.

3.3.1 HTTP

We consider HTTP to be much superior for our purpose (remote logging) than PAD
over TCP or UDP because HTTP defines a robust session protocol.

In HTTP’s case, the session protocol runs on top of a TCP (or secure TLS/SSL)
connection. Generally and very roughly speaking, a session protocol (such as HTTP’s)
formally specifies how the entities involved in the communication should behave on
matters such as: which entity initiates the connection, which entity talks first over the
connection, how protocol compatibility between the two is verified, how
transactions between the entities correspond to messages sent over the connection,
what each entity should do in the sending and receiving of messages to reliably
implement the transactions, how each entity handles errors or misunderstandings,
how unresponsiveness or unexpected disconnection of the peer is handled, etc.

The session protocol also formally specifies the service it provides to the application,
which, in HTTP’s case, involves a client requesting a resource identified by a URL and
a server responding with the resource.

None of these matters is trivial—designing a robust session protocol is hard!—and all
Internet communication protocols need to address the problems.

HTTP is well designed, mature and robust and quality implementations are available
as commercial or open source software. It is also well suited to our purpose: an
automation system (the HTTP client) encodes song metadata as an HTML form and
sent with either HTTP’s GET or POST method?; Spinitron (the HTTP server) responds
either with a confirmation or message identifying what went wrong.

3.3.2 PAD over TCP/UDP

PAD over TCP/UDP as implemented by many automation systems (including Simian
and DAD) do not define a session layer. That’s because they were designed to run not
over the Internet but over a LAN, fire-walled from the Internet, in which negligible
packet loss and latency can be taken for granted.

TCP

In any use of TCP, some kind of session protocol is unavoidable, whether it is
explicitly defined or merely emergent in the software design. As far as we know so
far, in every PAD over TCP implementation the session behavior is undefined. And

* While both work, we prefer the POST method on the grounds of proper HTTP compliance. According
to Section 9.1 of the HTTP/1.1 specification (RFC 2616), we should not use GET because our use is, in
HTTP terminology, not “safe”. http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

18

there appears to be no industry standard. But if you study an implementation
(reverse engineering), a session protocol emerges from its various behaviors. For
example, in any given implementation, answers must exist to the following (and
many more) behavioral questions:

* Which entity (automation system or PAD receiver) initiates the connection?

* Is there one connection per PAD message or is a persistent connection used
for many?

* How does each entity handle an unresponsive peer?

* Isreconnection attempted if the connection fails? Which entity is responsible?
What are the procedures?

* If a persistent connection is used, how are messages delineated? Which
entities are allowed to terminate the connection? Is there any idle timeout?

¢ etc

A good session protocol may be easier to design for a safe, low-loss LAN than for the
Internet but it is still not trivial. For example, in the case of Simian, we know that its
session behavior causes problems. The manual says: “Note that TCP can cause
delay/timeout issues if the address and port specified are not accessible”. We have
observed every-day conditions (e.g. the PAD receiver reboots) cause complete failure
of Simian 2.0.7 PAD communications.

In other words, Simian’s (emergent) session protocol is defective and not suitable for
remote logging.

We have not yet tested DAD.
uDP

In PAD over UPD, there is little mystery about the session protocol, it is a null layer:
the PAD message (and nothing else) goes in the UDP data payload and the datagram
is sent and summarily forgotten about by the sender. Relative to TCP this is nicely
unambiguous and predictable but there are two problems.

First, for our purposes, UDP (indirectly) limits the length of the PAD message.
Routers are not obliged to fragment IP packets exceeding the next-hop link’s MTU.
So we have to assume that if the PAD message (plus UDP overhead) is too big to fit in
an IP packet of length equal to the path MTU, the IP packet will not be fragmented
and the message will not be delivered. PMTU discovery wouldn’t help, even if the
automation system implemented it, because there’s no mechanism to adapt the PAD
to fit the message length limit. Automation systems don’t even have a way to use a
statically configured limit. All we can do is try to keep the messages as short as
possible and hope for the best.

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

19

In practical terms, this means that we should use PAD message templates with the
minimum of overhead and eliminate non-essential fields. For example, where
possible we would avoid XML. But we need to take care not to trim so much from the
template that we compromise field delineation (which is a topic of the next
subsection).

The second problem with UDP is much bigger—it is unreliable by design. If the
message is lost in the network, neither the sender nor the receiver will know unless a
session protocol provides for reliability, which is not the case with automation
systems.

Message loss is a serious concern. In our application, PAD message loss will
correspond closely to IP packet loss. About the worst thing about IP packet loss in
Internet applications is its unpredictability. Most of the time, the loss rate is very low
but sometimes it is significant and occasionally it is very high. There are no
guarantees. The best we can do if we use UDP is audit the automation system log
against the corresponding Spinitron playlists to identify the losses.

Message framing and field delineation in PAD messages

When we use, HTTP the solutions for message framing and field delineation are
trivial. HTTP provides the transactions to accomplish message framing and music
metadata elements are encoded as individual strings using the application/x-www-
form-urlencoded type, which handles field delineation.

With PAD over TCP/UDP, on the other hand, we need to design a solution.

First, message framing: In PAD over TCP, if persistent connections are used then we
need a pattern to identify the message within the TCP byte stream. XML is often used
for PAD messages and it provides for framing assuming one PAD message exactly
corresponds to one XML document.

XML is OK for TCP but we don’t recommend XML for UDP owing to the limited UDP
message length and XML'’s heavy overhead. Message framing in UDP is easy because
we assume the UDP payload contains exactly one PAD message and nothing else.

Field delineation is also handled by XML but there remains a small concern about
transparency of the field values. We must assume that music metadata string can be
anything. So, in an XML template for PAD messages we would wrap CDATA elements
around the automation system’s tags.

But we further assume that the automation systems do not encode, escape or quote
the strings with which they replace the tags (how could they?). In other words, we
assume that metadata strings could break the field delineation and/or message
framing.

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

20

In the case of XML, this means we have to accept that if the three character string
11> appears in any music metadata, the XML parser will fail and Spinitron will have to
discard the message.

For PAD over UDP in Simian and the Now Playing file in Megaseg, we designed the
file/message format shown in the corresponding appendices. We believe they will do
no worse than XML at framing and delineation but with lower overhead.

3.4 Security

There are three security aspects to consider with remote logging over the Internet:
* Server authentication
* C(lient authentication

* Privacy of sensitive data

Server auth means that the client has a way to authenticate the server, i.e. to check
that the server it is communicating with is indeed Spinitron. This is the same problem
as being sure that, when you log on to a web site that purports to be PayPal, it really
is PayPal and not some imposter. For automation remote logging, this may not be of
great concern to you but Spinitron offers server auth when the remote logging is
performed over HTTPS.

We achieve client auth by including a user name and password along with the song
metadata in each HTTP request/PAD message from the automation system. This
leads directly into the third security aspect.

Usernames and passwords are sensitive data and we normally expect them to be
kept private. But these credentials travel over the network in plaintext in all available
protocols (see Section 3.3) except HTTPS. It would not be hard for a motivated
attacker to read the credentials from log messages without detection. With them, he
or she has access to Spinitron as one of your station members with whatever
permissions that particular account has.

HTTPS is a ubiquitous, trusted protocol that provides all three security features we
need: server and client auth and data privacy. HTTP and PAD over TCP or UDP provide
none of them.

At present only Rivendell and the Megasg Now Playing method use HTTPS.

Spinitron will accept log messages purporting to be from your station only from IP
addresses or address ranges that you tell us to authorize. For example, if your only
automation computer has a static public IP address then we can configure Spinitron
to only accept messages for your station from that IP address. This makes injection
attacks via the remote logging API a little harder but doesn’t prevent an attacker
from stealing account credentials with which to log on to the web interface.

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

21

Use of HTTP or PAD over TCP/UDP without additional security measures is
inconsistent with all of Spinitron’s other security procedures and precautions. It is up
to your station’s management to decide if the risks are acceptable. Relevant
considerations include: What could motivate the attacker? Is the prize worth the
effort? What harm could an attack do you, your station, staff, parent institution etc.?

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

4 Appendices

4.1 SAM logger PAL script

22

The following script is very basic. Feel free to embellish it if needed.

// Basic PAL Script to log songs to Spinitron when a new song starts
// playing in the active deck.

// Configuration. Change the values here according to your situation.

const station = "wxyz'; // your station

const username = 'user@maildomain.com'; // logger account username
const password = 'password'; // logger account password
const urlbase = 'http://spinitron.com/member/samlog.php’;

const minlen = 30; // don't log songs < minlen seconds

// Declare variables

var song: TSongInfo; // instantiate a TSongInfo object
var url: String = ''; // in which the full URL is composed
var result: String = ''; // result string from Spinitron

var length: Integer = 0; // song length in seconds

// Logger loop
while (True) do
begin
{ NOTE: From SAM documentation...
ActivePlayer:
Returns the player object that is currently playing a track.
If DeckA is playing, it returns the DeckA player.
If DeckB is playing, it returns the DeckB player.
If both DeckA and DeckB are playing, then it returns DeckA.
If neither DeckA or DeckB are playing the result will be nil.
}
if ActivePlayer <> nil then
begin
song := ActivePlayer.GetSongInfo; // DO NOT MODIFY song
if song <> nil then
begin
length := Round(StrToInt(song['duration'])/1000);
if length >= minlen then

begin
// DO NOT MODIFY FROM HERE DOWN TO...
url := urlbase;
url := url + '?st=' + URLEncode(station);
url := url + '&un=' + URLEncode(username);
url := url + '&w=" + URLEncode(password);
url := url + '&w=" + URLEncode(song['artist']);
url := url + '&sn=" + URLEncode(song['title']);
url := url + '&n=" + URLEncode(song['album']);
url := url + '&r=" + URLEncode(song['year']);
url := url + '&1=" + URLEncode(song['genre']);
url := url + '&ln=" + URLEncode(song['label']);
url := url + '&sc=" + URLEncode(song['composer']);

Automation integration v. 2010-10-08

© 2010 Spinitron. Do not copy or redistribute

23

url := url + '&se=" + URLEncode(song['comments']);
url := url + '&sd=" + IntToStr(length);
result := WebToStr(url);
// ...HERE
writeLn(result); // rudimentary logging
end;
end;
end;
PAL.WaitForPlayCount(1);
end;

4.2 Megaseg Now Playing template file

Use the following template file but check with us if it has since been updated.

~~naMEGASEGL

~st=wzbc
~un=user@maildomain.com
~pw=password
~sn=<!--MegaSeg, Title-->
~aw=<!--MegaSeg, Artist-->
~dn=<!--MegaSeg, Album-->
~Categories=<!--MegaSeg, Categories-->
~cn=<!--MegaSeg, Composer-->
~se=<!--MegaSeg, Notes-->
~ln=<!--MegaSeg, Publisher-->
~dr=<!--MegaSeg, Year-->
~sd=<!--MegaSeg, Length-->
~AAMEGASEGL

4.3 Simian HTTP Stream Encoding Metadata URL template

There should be about 10 lines in the C:\BSI32\EncoderData.ini file. Change one of
the custom lines to the following (changing custom1 at the beginning to Custom2 or
Custom3 if needed).

Customl=/member/simianlog.php?st=wxyz&un=%username%&pw=%password%&aw=%arti
st%&sn=%title%&ct=%category%&sd=%lengthseconds%&dn=%album%&ln=%publishery

Change the value of the parameter st to your station ID. Append &pm=2 to set
Spinitron’s playlist handling mode to live assist.

4.4 Simian PAD template file

Use the following template file but check with us if it has since been updated.

~~vnSTMIANL
~st=demo
~un=tom@spinitron.com

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

24

~pw=himhowl
~category=%CATEGORY%
~awW=%ARTIST%
~sn=%TITLE%
~dn=%ALBUM%
~sd=%LENGTH%
~d1=%GENRE%
~dr=%YEAR%
~sc=%COMPOSER%
~1n=%PUBLISHER%
~curtime=%CURTIME%
~curdate=%CURDATE%
~5e=%COMMENTS%
~ANASTMIANL

4.5 Spinitron generic remote logging APl parameters

The table below details the complete set of generic parameters for remote logging.

Key Name

st stationID

:un user name

pw password

:pm playlist handling
mode

aw artist whole name

al artist last name

af artist first name

sn song name

:sc song composer

se songnote

:sp song timestamp

sd song duration

:r‘q request

ne new

lo local

dn disk name

df disk (media)
format

:dt disk (release) type

Automation integration v. 2010-10-08

Required (Y means yes. * means either:al or awky must be specified)

|

Y
Y
Y

*

*

Notes

ASCII string, typically a 4-letter station call sign

ASCII string, email address username of valid user account
ASCII string, password corresponding to user name

Digit: 0, 1 or 2, default=0, explained in Playlist handling section
below

UTF-8 string, ignored if al is given, whole name of artist

UTF-8 string required if aw is not given, alphabetical part of artist
name

UTF-8 string, part of artist name before alphabetical part
UTF-8 string

UTF-8 string

UTF-8 string, arbitrary metadata attached to song

any parsable ASCII time or date-time string, defaults to local time of
station

ASClII string, either the duration in seconds or in minutes and
seconds separated by a colon, e.g. 4:33

if set to 1 flags the song as a request

if set to 1 flags the song as new material at the station
if set to 1 flags the disk as local music

UTF-8 string, name of disk, defaults to song name

UTF-8 string, e.g. "CD", "LP", "7-inch", preferably supply only values
configured for the station's menus, defaults to unset

UTF-8 string, e.g. "Album", "Single", "Comp", preferably supply only

© 2010 Spinitron. Do not copy or redistribute

25

values configured for the station's menus, defaults to unset

:dl library/genre UTF-8 string, e.g. "Rock", "Jazz", "Blues", preferably supply only
values configured for the station's menus, defaults to unset

dr disk release year 4-digit year, year the disk was released, defaults to unset

:da disk add date any parseable ASCII date string, date the disk was added to the
station's libraries, defaults to unset

1n label name UTF-8 string, default to empty string

:lc label country UTF-8 string, default to empty string

le label email email address, default to empty string

lu label URI web site address URI, default to empty string

We expect automation systems will usually send artist name in aw form rather than af
+ al.

All generic parameters (i.e. those in the table) are available to all automation systems.
But Spinitron extends the generic parameters for specific automation systems with
automation system-specific parameters where necessary. SAM and Rivendell use the
generic APl while Simian and Megaseg need some (automation system-) specific
parameters. You can identify them in the appropriate subsection in Section 2 and
corresponding appendices, for example in Simian there is category, curdate and
curtime.

4.6 Character encoding

In the generic API, character encoding is either US-ASCII or UTF-8 depending on the
parameter. Both of these are compatible with Windows Latin-1 (Windows-1252) and
the ISO-8859 family of character encodings so long as only the ASCIl range of
characters is used and the upper half of the code page from 0x80 to oxFF are strictly
avoided, otherwise Spinitron’s behavior is unspecified. For example, sending
metadata names with extended Latin characters (such as é or i) in one of these
single-byte encodings will not work properly.

In practice, song metadata strings quite frequently use characters outside the ASCII
range.

So, for each supported automation system, Spinitron has an APl that performs
encoding conversion to the best of our current understanding of the automation
systems. The caveat is needed because the automation systems and their
documentation are not explicit about their use of character sets and encodings.

4.7 Playlist mode parameter formal specification

When the Spinitron server accepts a song for logging with pm=e or 1 or with pm absent
from the query, it shall select a playlist according to the following rules:

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

26

1 If a playlist exists, owned by user un and the song timestamp (i.e. sp or the local
time at the station, if sp is not given) lies between this playlist's date and on-air
time and off-air time, the server shall log the song to this playlist.

2 If more than one playlist matches the criteria in 1., the server shall select from
these the playlist with the greatest playlist-ID (which is normally the most recently
created).

3 If no playlist matches the criteria in 1., the server shall create a playlist belonging
to user un with date corresponding to the song's timestamp for a show selected
or created according to the following rules.

4 If aregular (i.e. scheduled) show owned by user un and the song timestamp is on
one of the show's weekdays and between its on-air time and off-air time, the
server shall create a playlist for this show and log the song to it.

5 If more than one shows matches the criteria in 4., the server shall select from
these the one with the greatest show-ID (which is normally the most recently
created).

6 If no show matches the criteria in 4., the server shall create an irregular show (i.e.
not in the station's program schedule) owned by user un. The show's on-air time
shall be the song timestamp rounded down to the nearest whole hour, its off-air
time one hour after the on-air time and its show name shall be the Station ID in
upper case followed by on-air and off-air times, e.g. "WXYZ 3am - 4am".

If the request includes pm=1 and if the song is successfully logged then the server shall
mark the playlist selected by the above rules as the station's current playlist (defined
below).

Hence if a station uses computer automated operations for certain scheduled hours
of the week, the automation user account may be given regular shows covering
those hours and Spinitron will create playlists as needed and log songs into them
according to song timestamp (or local time at the station). If an automation system
logs songs outside the weekdays/hours of these scheduled shows then irregular
shows with generic names are created.

4.7.1 Current playlist and pending current playlist
Since the first release of this API, struck-out text below has become obsolete.

The "current playlist" is the playlist that appears on the station's public Spinitron web
site when the web client selects no playlist, e.g.

http://spinitron.com/radio/playlist.php?station=wxyz

shews-wxyz!'s-eurrentplaylist:

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

27

Spinitron now selects (for public display when the user has chosen nothing else) the
playlist containing the song with the most recent date/time that is in the past.

Spinitron marks a playlist as the current playlist when:

—_

a DJ logs a song into a playlist in the "live on-air" manual logging mode,

2 the station's local time matches the date and timestamp of a song in a playlist
logged using "before the show" logging mode,

3 when asong is logged using this APl and the query includes pm=1, or

4 when the station's "pending current playlist" variable is set and a song is logged
using this APl and the query includes pm=2. At the same time, the "pending
current playlist" variable is cleared.

When a user opens a playlist in "live on-air" logging mode, the server shall mark this
playlist as the station's "pending current playlist" ("pending" in the sense that there
are no songs logged in it yet). When a song is logged into the pending current
playlist, either manually using the web form or using this remote API with pm=2, then
the server shall mark the playlist as the station's current playlist and clear the
station's "pending current playlist" variable.

So it is important that the automation system not log songs with pm=e or 1 when a
show is being performed manually and the DJ is logging songs manually. Songs
played manually by a DJ on the automation system should be logged with pm=2.

Automation integration v. 2010-10-08 © 2010 Spinitron. Do not copy or redistribute

